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Abstract
We numerically investigate the vibrational spectra of single-component clusters in two
dimensions. Stable configurations of clusters at local energy minima are obtained, and for each
the Hessian matrix is evaluated and diagonalized to obtain eigenvalues as well as eigenvectors.
We study the density of states so obtained as a function of the width of the potential well
describing the two-body interaction. As the width is reduced, as in three dimensions, we find
that the density of states approaches a common form but the two-peak behavior survives.
Further, calculations of the participation ratio show that most states are extended, although a
smaller fraction of the degrees of freedom are involved in these modes compared to three
dimensions. We show that the fluctuation properties of these modes converge to those of the
Gaussian orthogonal ensemble of random matrices, in common with previous results on
three-dimensional amorphous clusters and molecular liquids.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of vibrational spectra has long provided important
insights into the understanding of amorphous states of
matter [1], such as molecular glasses. However, many key
questions still remain unanswered. The vibrational disorder
that is present in systems such as glasses is mainly topological
in origin, and over the years a lot of effort has been given
to the study of glass and glass transitions in terms of the
underlying potential energy surface (PES) [2–9]. One of
the main focuses has been the study of inherent structures,
i.e. local minima of PES, and properties like ageing have
also been studied as a function of inherent structures [10].
Regarding vibrational spectra of systems having a topological
disorder [11–17, 20–28], a popular approach relies on the study
of the statistical properties of random matrices, as within the
harmonic approximation the dynamical or the Hessian matrix
contains all the dynamical features [11–17].

Recently, studies of the vibrational spectra of amor-
phous systems have revealed some interesting universal
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aspects. In particular, studies of three-dimensional amorphous
clusters [21–23] have demonstrated the universality in the
functional form of the density of states (DOS), and further,
the statistical fluctuations have been shown to obey the
characteristics of the Gaussian orthogonal ensemble (GOE)
of random matrices to a very high degree of accuracy.
Recent studies on periodic three-dimensional molecular
network-forming liquids have also shown that the statistical
fluctuations obey the characteristics of the GOE [24] at
various temperatures and for various densities. Even in
amorphous alloys [28], the statistical fluctuations have been
reported to obey the characteristics of random matrix theory.
Another universal feature that has been reported in earlier
and recent studies on periodic three-dimensional amorphous
systems using various model potentials is the density of states
function approaching a limit that is independent of the explicit
functional form of the potential in the amorphous regime. The
reasons for this universality have been suggested in [18–20].

The concept of localization and delocalization of
vibrational states has also been a focus in these studies, with
delocalized states being associated with GOE statistics [17, 27]
and localized states resulting in Poissonian statistics [17].
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A popular measure of localization is the participation
ratio [15–17, 20–27]. Values for participation ratios for three-
dimensional amorphous clusters [20–23], network-forming
liquids [24] and atomic liquids [27] indicate that the majority of
the states are delocalized, supporting the apparent universality
of GOE behavior in the statistical fluctuations.

Recent years have also seen an increase in studies
of the vibrational properties of nanocrystalline materials,
both theoretically [29] and experimentally [30]. The new
experimental techniques and methods have made it possible
to explore the systems that are very small in size [31] and
increased computational power has even made it possible to
explore such systems in reduced dimensions [32].

In the present work we numerically investigate the
vibrational spectra of two-dimensional clusters. It is well
known (e.g. in critical phenomena) that dimension has a strong
effect on universal behaviors, and a detailed study in a lower
dimension would be a severe test of the robustness of the
observed universalities in three-dimensional systems. For
example, as suggested in [33], in quantum mechanical systems
such as two-dimensional kicked rotors for lower dimensions
(d � 2), all the electronic states are exponentially localized,
while for higher dimensions (d > 2) there are extended as well
as localized states. Also, disordered molecular systems display
novel behavior in two-dimensions, e.g. the occurrence of the
hexatic liquid phase that has a long range bond order without
translational order [34]. Hence, checking the universality of
the vibrational spectra for two-dimensional clusters is a severe
test. We are interested in seeing the effect of dimensionality
on the states being localized or delocalized, with the main
focus being on statistical fluctuations for the present two-
dimensional case.

2. Methodology and density of states

The model used for the interactions between the particles is
the Morse potential [35]. Over the years various studies have
demonstrated the usefulness of this potential in simulations (for
example [36, 37]). The form of the potential energy V of the
system is

V =
∑

j>i

{exp[−2α(ri j − 1)] − 2 exp[−α(ri j − 1)]}. (1)

The potential is thus a function of inter-particle distance ri j and
the (positive) parameter α; the sum is over all pairs of particles
in the system. The α parameter can be tuned to fit a variety of
systems, ranging from metals such as sodium with α = 3.15,
van der Waals bonded systems such as rare gases with α = 6,
to the very short-ranged interactions of the C60 molecule with
α = 13.62 [37]. The values of α that have been used in the
present study are 3.5, 6.0, 10.0, 13.0 and 16.0. Using these
values of α for the interaction potential, we first generate stable
two-dimensional clusters with N = 4000, where N is the
number of particles in a cluster. For some calculations, clusters
with N = 500 and 2000 particles are used.

In order to generate stable clusters, we begin by
initializing the particle positions within the limiting distance
r = √

N/π on the x–y plane. Figure 1(a) shows an example

Figure 1. (a) A typical starting configuration of a two-dimensional
cluster with N = 2000. (b) Stable two-dimensional cluster obtained
using the method of homotopy with N = 2000.

of a typical starting configuration for N = 2000. In order to
obtain the potential energy minimum for such a configuration,
we use the homotopy method of minimization [38, 39].
According to this method, in order to find a local minimum
of a function V , we minimize in a series of steps the quantity
θV + (1 − θ)W , where W is a suitably chosen simple function
(e.g. quadratic) and θ is varied from 0 to 1 in a finite number
of steps, typically 20. The minimized configuration for one
value of θ serves as the initial configuration for the subsequent
step. Figure 1(b) illustrates a two-dimensional stable cluster
generated by this method.

At each local minimum generated by this method, a
Hessian matrix is constructed using the position coordinates of
particles at that minimum and is diagonalized using standard
methods to obtain the eigenvalues as well as the eigenvectors.
The eigenvectors correspond to the normal modes and the
eigenvalues (λ) are related to the frequencies (ω) of the
obtained normal modes according to ω = √

λ. The normal
modes obtained in this manner are also known as quenched
normal modes (QNM). A quantity that is of central physical
interest is the density of states (DOS) function, the histogram
of values of ω, denoted by G(ω). In figure 2(a), we plot
G(ω) for several values of α. To improve statistics we
combine information from the available distinct quenched
configurations (at least 75 for each case) by averaging over
all the configurations. After obtaining the raw averaged DOS
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Figure 2. (a) Density of states (G(ω)) versus normalized frequencies
of normal modes plotted for various values of α. The area under each
curve has been rescaled to unity. N = 4000 has been used in this
calculation. (b) Participation ratios (pα) versus normalized
frequencies of the normal modes for various values of α. (c) log(pα)
versus normalized frequencies of the normal modes for α = 6.0 for
N = 500 and 2000 particles.

function, the average frequency is normalized to unity and
G(ω) is rescaled so that the area under the curve is also unity.
This process enables us to compare the DOS for different
values of α. Figure 2(a) clearly shows the existence of a two-
peak behavior for all the values of α studied, suggesting that
the obtained local minima have weakly-disordered domains
with grain boundaries. This is further evident from figure 1(b).
This two-peak nature observed in the DOS function is also
consistent with the recent results obtained by Hudon et al
[32], where bulk nanocrystalline materials in two-dimensions
were studied using the Lennard-Jones interaction potential and
a similar form for G(ω) is observed. It also shows that the
present system behaves as a ‘normal’ two-dimensional system
as per the notation used by Hudon et al [32]. The peaks shift
towards the right with increasing α and the overall structure
varies very slowly for higher values of α.

This is also notably different from the earlier study
conducted on a periodic three-dimensional system using a
similar generalized Morse potential [20, 23]. In the three-
dimensional case, it was possible to generate states with
variable amounts of disorder and the analysis of disordered
states showed that the two-peak behavior of DOS changed
over to one-peak behavior as the value of α was increased;

by the time α reached 16 only one peak remained. Further
increase in the α value led to small changes in the overall DOS
shape [20, 23]. However, in the present case, potential energy
minimization results in states that are weakly-disordered rather
than totally amorphous, and at present it is not clear how one
could generate stable clusters in two dimensions that have
variable amounts of disorder. However, a similar feature in
both the two- and three-dimensional cases occurs at higher
values of α, where the DOS function varies very slowly with
further increases in α.

Figure 2(b) shows the participation ratios [15–17, 21–27]
calculated using the eigenvectors corresponding to each
eigenvalue for all values of α. Mathematically, the
participation ratio is defined as

pα ≡
[

N
∑

i

(
ei
α·ei

α

)2

]−1

(2)

where ei
α is the projection of the eigenvector (labeled by α)

onto particle i . For extended modes, p is of the order of
unity and does not depend on system size, while for localized
modes it will scale inversely with the system size. Calculations
for participation ratios have been done using N = 500 and
2000 particles. For each value of α on this plot, information
from various quenched configurations is combined to improve
statistics. For all the α values studied, maximum values for
participation ratios stay below or close to 0.6 which might
suggest that more states are localized in two dimensions as
compared to three dimensions. However, closer examination
of participation ratios plotted on a semi-log scale in figure 2(c)
with varying N shows that the states are definitely not localized
over the wide spectrum that has been used for studying
statistical fluctuations. Since the two systems differ in size
by a factor of 4, localized modes in the larger system should
have participation ratios approximately 1/4 of those in the
smaller system. We find that differences on this scale only
occur towards the higher values of ω. Hence, even though
the participation ratios in the middle part of the frequency
spectrum that is used in the analysis of statistical fluctuations
are close to 0.5 or 0.6, these still have behavior consistent with
extended modes of the system.

3. Fluctuations

We now investigate the statistical fluctuation properties of
the DOS. In the present case, the fluctuation properties are
computed for λs, the eigenvalues. For a particular inherent
structure, we denote the elements of the obtained spectra by
λ(i) with i = 1, 2, . . . , 2N . Since the present system is
two-dimensional, the first three elements in the spectra will
be zero and the remaining (2N − 3) positive frequencies are
characterized by defining a mean local density as well as
the fluctuations around it. The first step in computing the
fluctuation properties is to unfold the data [21–24, 40–42].
This process enables us to transform the eigenvalues in
such a way that the average spacing between two successive
eigenvalues is unity.
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Figure 3. Integrated density of states for a single spectrum for
α = 6.0 with N = 4000. Data in the region I have been used for
unfolding and to analyze the statistical fluctuations.

For unfolding the data, we define H (λ) to be the number
of frequencies equal to or less than λ, as shown in figure 3,
and S(λ) is a smooth function that passes through the staircase
function H in the best-fit sense. In the present case there is
no single function that passes smoothly through the whole of
H in the best-fit sense. We leave out small regions (about
10% of the levels) from each end of the spectrum and for the
remaining levels in the central region marked as I in figure 3,
we use a quadratic polynomial D(λ) = a + bλ + cλ2 as an
approximation for S(λ) over the remaining spectral region. It
must be stated that there is no particular reason to leave out
the lower end region of I other than to obtain better fitting
to the data; however, it is evident from figures 1(b) and (c)
that towards the upper end of I, more states are localized and
hence, for the analysis of this paper, it is the central regime
that we are interested in. The values of a, b and c are obtained
by a standard least-square fitting procedure. We also calculate
the misfit function [22, 23] corresponding to each of the fits
to check how well D(λ) approximates S(λ). The plot of the
misfit function we find is qualitatively similar to the plot in
figure 1(b) of [22].

In order to reduce the mismatch to a lower degree, we
eliminate subregions where the mismatch function has a very
irregular behavior. In the remaining regular subregions we fit a
quadratic function to the misfit function, and we correct D(λ)

by these quadratic functions to obtain the desired unfolding
functions. For each of the fluctuation properties reported in
this paper, we combine the data from all the subregions of all
the spectra.

Figure 4. (a) Probability density p(s) for normalized nearest
neighbor spacing (s) for various values of α. Also shown is the
prediction for the GOE. N = 4000 has been used in this calculation.
(b) Variance of the number of levels in intervals of length r shown as
a function of r for various values of α. Also shown is the prediction
for the GOE. N = 4000 has been used in this calculation.

Note that this process of unfolding is quite different from
the one used in [21–23] in which an exponential function
has been used to unfold the data followed by the quadratic
correction. In the present case, we could not find any suitable
S(λ) that could pass through H . Hence we had to resort to this
method. However, the advantage of this method of unfolding
is that it provides a suitable way of handling more complex
functions that have no well-defined analytical form [24].

The first fluctuation property that we report here is p(s),
the distribution of the normalized nearest neighbor spacings
s of the frequencies of the unfolded spectra. For this, we
first complete the process of unfolding described above for
each of the spectra using D(λ). At this level, we apply the
quadratic correction to this D(λ) ignoring small regions where
the misfit function is very irregular. In this way we obtain
the unfolded spectra for each of the spectra. Selection of
a random individual spectrum and analysis of each of them
separately indicates that the spectrum has fluctuation properties
associated with the Gaussian orthogonal ensemble (GOE) of
random matrices. To improve statistics, we combine the data
of all the available unfolded spectra. These have been plotted
in figure 4(a) for three values of α along with the theoretical
prediction [40–43]. It can be seen that the agreement with the
theoretical prediction is extremely close, in spite of the values
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Figure 5. (a) Skewness parameter of the distribution of n(r), the
number of levels in intervals of length r , shown as a function of r for
various values of α. Also shown is the theoretical prediction for the
GOE. N = 4000 has been used in this calculation. (b) Excess
parameter of the distribution of n(r), the number of levels in
intervals of length r shown as a function of r for various values of α.
Also shown is the theoretical prediction for the GOE. N = 4000 has
been used in this calculation.

of the participation ratios being lower than those found in three
dimensions.

The second fluctuation property we report is the quantity
�2(r), the variance of the number of levels n(r) within an
interval of length r located randomly in the unfolded spectrum.
This is plotted in figure 4(b). It must be emphasized that the
quadratic correction applied to the fitting function D(λ) is very
important in calculating �2(r). This calculation is extremely
sensitive even to very small errors in the approximation
to S. The contribution of any such error to �2(r) grows
as r 2, whereas the GOE prediction for �2(r) grows only as
ln(r) [21–23]. Values for α = 3.5 almost overlap to the
theoretical prediction whereas we do see a shift for the other
two α values. This may be due to the following possible
effects: (i) as explained in [21–23], the exact locations of
the irregular regions vary in the contour of the misfit function
and this might add to the observed shift. A detailed analysis
using a spectrum-specific [22, 23] choice of subdomains
might help in determining the strength of this effect on the
observed deviation. (ii) As observed from figure 1(b), values
of participation ratios decrease with increasing α, and this
decrease might have a role to play in the observed deviation.

In figures 5(a) and (b), we plot the skewness and excess
parameters [43] of the fluctuations. Also included in these
plots are the predictions for the GOE. These predictions have
been calculated on the basis of a large ensemble of 500 ×
500 matrices belonging to the Gaussian orthogonal ensemble.
Again we observe that the agreement with the theoretical
prediction is extremely close. Plots show only one value of
α just for clarity. Other values of α also have the same level of
agreement with the theory as α = 6.

4. Conclusions

Our results for the DOS of two-dimensional clusters show
the survival of a two-peak behavior when the width of
the potential well describing the Morse potential is reduced
progressively, thereby indicating a weak disorder in contrast
to the three-dimensional case. The participation ratios suggest
that the vibrational spectrum has a behavior consistent with
the extended modes of the system. Further, the vibrational
spectrum has fluctuation properties associated with the GOE
of random matrices. For each of the fluctuation properties,
agreement with the GOE prediction is extremely close. The
observed shifts in the case of the �2(r) calculations suggest
that the magnitude of the participation ratio might have a
role to play in this behavior; however, since calculations
of the normalized nearest neighbor spacings distribution and
skewness and excess are extremely close to the theoretical
prediction, it may not be incorrect to say that the system still
follows GOE.

This work leaves us with the following challenges as a
part of future work. (1) The first challenge is to generate
local minima that have a variable degree of disorder in two
dimensions; at the moment it is not clear how to generate such
states in two dimensions so as to allow us to do a systematic
study with respect to disorder. (2) What should the level
of disorder be before we see a convincing departure in the
statistics from GOE? The present work shows that the statistics
are of GOE type even in weak disorder. The reasons for this
effect are yet to be determined. (3) As mentioned by Hudon
et al [32] in their studies on bulk nanocrystalline materials,
density can influence the thermal properties of nanocrystalline
materials. Using this argument, it would of great interest to
generate local minima as a function of density and repeat the
calculations for statistics.
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